

RCP-Planet: A Rate Control Scheme for Multimedia Traffic in InterPlaNetary Internet

Ian F. Akyildiz and Jian Fang
Broadband & Wireless Networking Lab.
School of ECE, Georgia Institute of Technology

Tel: 404-894-5141; Fax: 404-894-7883

Email: {ian,jfang}@ece.gatech.edu

http://www.ece.gatech.edu/research/labs/bwn

Challenges

- Extremely Long Propagation Delays
- High Link Error Rates
- Bandwidth Asymmetry
- **Blackout Problem**
- Requirements of Multimedia Traffic
 - Bounded Jitter
 - Minimum Bandwidth
 - Smoothness

RCP-Planet Overview

Initial State

Decrease Blackout

- Objective: To Address the Challenges
- Framework:
 - * A New Packet Level FEC
 - * A New Rate-based Approach
 - * A New *Initial State* Algorithm
 - * A New Rate Control Algorithm in Steady State

Packet Level FEC

InterPlaNetary Internet Backbone Link

- \blacksquare Media rate r_m is the data rate from the application
- r_s is the source sending rate

Packet Level FEC (Tornado Codes)

- Tornado codes *FEC* (*n*,*k*) are used for packet level FEC
 - * *n* is the FEC block length
 - * k is the number of packets required to recover a block
- Advantage:
 - Very fast encoding and decoding speeds
- Disadvantage:
 - Require slightly more packets to recover a FEC block
- Original data length d must be chosen appropriately to minimize the total FEC Overhead → (n-d).

Initial State (FEC Redundancy)

Challenges:

- FEC Redundancy: Packet loss rate p is unknown
- Initial Rate: Available bandwidth is unknown

FEC Redundancy

- Use most recent history value p_h to determine the FEC block length n.
- Assume $\rightarrow p_l >> p_h$ for possible worse network condition
 - * Calculate the FEC block length n'.
 - * Use n' as the actual FEC block length to encode data.
- For one FEC block, send n packets and the remaining (n'-n) packets in low priority.
- Address the worse network condition by sending more redundancy.
- However, part of the redundant packets are sent in low priority so that they will not affect the actual data traffic.

6

Initial State (Setting the Initial Rate)

- The initial media rate $r_{m,init}$ is conservatively set to a minimum rate required by an application.
- The initial sending rate r_{s,init} is then

$$r_{s,init} = r_{m,init} \cdot n/d$$

- * n is the FEC block length
- *d is the original data length

Initial State (Rate Probing)

- To determine the available bandwidth, a probing scheme is used in both INITIAL and STEADY STATES.
- In each FEC block, we first send a fixed number of packets, called a probing sequence, at a so-called probing rate r_p much higher than the initial source sending rate $r_{s,init}$.
- The remaining packets are sent using r_{s,init}.
- The observed rate r_o for the probing sequence at the receiver side is the available bandwidth.
- If $r_p > r_o \rightarrow$ some probing packets will be dropped.
- After one RTT, the receiver will send one ACK for each FEC block back to the sender which includes r_o and the current packet loss rate.

Steady State

- A Rate Adaptation Scheme to update probing rate based on the network condition
- A New Rate Control Scheme
- Blackout State to address the link outages
- Block Level ACK to address the Bandwidth Asymmetry problem

Steady State

(The Rate Adaptation Scheme for Probing)

- The receiver reports the observed rate for each probing sequence back to the sender.
- The variance of the observed rate is used as an indication of the degree of congestion.
- The probing rate is then decreased during congestion.
- The current probing rate $r_{p,i+1}$ is updated as

$$r_{p,i+1} = r_{m,\max} \frac{n}{d} (1 - \frac{V_{o,i+1}}{E_{o,i+1}})$$

where $r_{m,max}$ is the maximum media rate

 $E_{o,i+1}$ is the current mean of the observed rate $V_{o,i+1}$ is the current variance of the observed rate

$$E_{o,i+1} = \gamma E_{o,i} + (1 - \gamma) r_{o,i+1}$$

$$V_{o,i+1} = \gamma V_{o,i} + (1 - \gamma) (r_{o,i+1} - E_{o,i+1})^{2}$$

with γ is the forgetting factor, usually chosen as 0.95

Steady State

(The New Rate Control Scheme)

■ The available media rate $r_{a,i+1}$ (the upper bound of the current media rate) is updated based on the current observed rate $r_{o,i+1}$

$$r_{a,i+1} = r_{o,i+1} \bullet \frac{d}{n}$$

If $r_{a,i+1} \ge r_{m,i}$ (the current media rate), then

$$r_{m,i+1} = \frac{1}{2} \left[r_{m,i} + \sqrt{r_{m,i}^2 + 4 d \left(\frac{r_{a,i+1} - r_{m,i}}{RTT} \right)} \right]$$

 $\blacksquare If r_{a,i+1} < r_{m,i}, then$

$$r_{m,i+1} = r_{m,i} \bullet \beta$$

* β is a constant smaller than 1

Steady State (Blackout State)

- If the sender does not receive an ACK for a certain period T_w \rightarrow it goes to *Blackout State*
- Blackout State
 - Objective: To reduce the throughput degradation due to blackout.
 - Source stops sending new data packets.
 - Receiver keeps sending ACKs including the observed rate r_o and the packet loss rate p_a .
 - If the source starts to receive ACKs with $(r_o=0, p=1)$, then it starts to send packets with the same rate just before the blackout.

IFA'2003 12

Steady State (Bandwidth Asymmetry)

- ACK for each packet leads to congestion in the reverse link for asymmetrical space links
- **Block Level ACK**
 - For each FEC block, the receiver only sends one ACK to report the observed rate and current packet loss rate.
 - Delayed ACK can also be used to further reduce the number of ACKs.

Performance Evaluation (Media and FEC Rate)

Media and FEC Rate

(10 RCP connections, RTT=600 seconds, $p=10^{-4}$, Minimum Media Rate: 20KB/s, Maximum Media Rate: 140KB/s, Link Speed: 1300 KB/s, Duration=12000 seconds)

Performance Evaluation (Throughput)

Throughput vs. Packet Loss Rate due to Link Errors (10 RCP connections, RTT=300, 600, 1200 sec, $p=10^{-5}$ - 10^{-1} , Minimum Media Rate: 20KB/s, Maximum Media Rate: 140KB/s, Link Speed: 1300 KB/s, Duration= 10 RTTs)

Performance Evaluation (Overhead)

Overhead vs. Packet Loss Rate due to Link Errors (10 RCP Connections, RTT=300, 600, 1200 sec, p=10⁻⁵ - 10⁻¹, Minimum Media Rate: 20KB/s, Maximum Media Rate: 140KB/s, Link Speed: 1300 KB/s, Duration= 10 RTTs)

Performance Evaluation (FEC Block Recovery Rate)

FEC Block Recovery Rate vs. Packet Loss Rate due to Link Errors (10 RCP Connections, RTT=300, 600, 1200 sec, p=10-5 - 10-1, Minimum Media Rate: 20KB/s, Maximum Media Rate: 140KB/s, Link Speed: 1300 KB/s, Duration= 10 RTTs)

Performance Evaluation (Fairness)

Fairness vs. Packet Loss Rate due to Link Errors (10 RCP Connections, RTT=300, 600, 1200 sec, p=10⁻⁵ - 10⁻¹, Minimum Media Rate: 20KB/s, Maximum Media Rate: 140KB/s, Link Speed: 1300 KB/s, Duration= 10 RTTs)

IFA'2003

18

Performance Evaluation

Bandwidth Asymmetry Factor

$$f = \frac{Number \ of \ Packets \ Re \ ceived \bullet Packet \ Size}{Number \ of \ ACKs \ Sent \bullet ACK \ Size}$$

Bandwidth Asymmetry Factor vs. Packet Loss Rate due to Link Errors (10 RCP connections, RTT=300, 600, 1200 sec, $p=10^{-5}$ - 10^{-1} , Minimum Media Rate: 20KB/s, Maximum Media Rate: 140KB/s, Link Speed: 1300 KB/s, Duration= 10 RTTs) 19

Performance Evaluation (Blackout Performance)

Throughput vs. Blackout Duration
(RTT=600 sec, p=10⁻⁴, Minimum Media Rate: 20KB/s,
Maximum Media Rate: 140KB/s, Link Speed: 1300 KB/s,
Simulation Time= 6000 sec)

IFA'2003 20

Conclusions

- RCP-Planet is introduced to address the challenges in the InterPlaNetary Internet.
- RCP-Planet Framework
 - Initial State Algorithm
 - Rate Control Scheme based on Rate Probing
 - Blackout State to address link outages
 - Block Level ACKs for Bandwidth Asymmetry
- Performance evaluation shows RCP-Planet addresses the challenges and achieves high throughput and fairness.

21